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Aim 

 

To investigate glutathione and antioxidant status changes in erythrocytes from
febrile children receiving repeated supratherapeutic paracetamol doses.

 

Methods 

 

Fifty-one children aged 2 months to 10 years participated in the study.
Three groups were studied: group 1 (

 

n

 

 

 

=

 

 24) included afebrile children who did
not receive paracetamol; and groups 2 (

 

n

 

 

 

=

 

 13) and 3 (

 

n

 

 

 

=

 

 14) included children
who had fever above 38.5

 

∞

 

C for more than 72 h. Patients in group 2 received
paracetamol at a dose of 50 

 

±

 

 15 (30–75) mg kg

 

-

 

1

 

 day

 

-

 

1

 

 and those in group 3
received paracetamol above the recommended therapeutic dose, ie 107 

 

±

 

 28
(80–180) mg kg

 

-

 

1

 

 day

 

-

 

1

 

. A blood sample was taken for the measurement of liver
transaminases, gammaglutamil transferase (GGT), reduced glutathione (GSH), glu-
tathione reductase (GR), glutathione peroxidase (GPX), glutathione S-transferase
(GST), superoxide dismutase (SOD) and antioxidant status.

 

Results 

 

Aspartate aminotransferase activity in group 3 was higher than in the other
groups (

 

P

 

 

 

=

 

 0.027). GSH, SOD and antioxidant status were significantly lower in
group 3 compared with groups 1 and 2 (mean differences: for GSH 3.41 

 

m

 

mol
gHb

 

-

 

1

 

, 95% confidence interval (CI) 2.10–4.72, and 2.15 

 

m

 

mol gHb

 

-

 

1

 

, 95% CI
0.65–3.65, respectively; for SOD 856 U min

 

-

 

1

 

 gHb

 

-

 

1

 

, 95% CI 397–1316, and
556 U min

 

-

 

1

 

 gHb

 

-

 

1

 

, 95% CI 30–1082, respectively; and for antioxidant status
0.83 mmol l

 

-

 

1

 

 plasma, 95% CI 0.30–1.36, and 0.63 mmol l

 

-

 

1

 

 plasma, 95% CI 0.02–
1.24, respectively). GR activity was significantly lower in groups 3 and 2 in
comparison with group 1 (mean differences 3.44 U min

 

-

 

1

 

 gHb

 

-

 

1

 

, 95% CI 0.63–6.25,
and 5.64 U min

 

-

 

1

 

 gHb

 

-

 

1

 

, 95% CI 2.90–8.38, respectively). Using multiple regression
analysis, paracetamol dose was found to be the only independent variable affecting
GR, GST and SOD activities (

 

P

 

 

 

=

 

 0.007, 0.003 and 0.008, respectively).

 

Conclusions 

 

In febrile children, treatment with repeated supratherapeutic doses of
paracetamol is associated with reduced antioxidant status and erythrocyte glutathione
concentrations. These significant changes may indicate an increased risk for hepa-
totoxicity and liver damage.

 

Keywords:

 

 antioxidant status, febrile children, glutathione changes, glutathione-
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Introduction

 

Paracetamol is the most frequently used over-the-counter
medication in children in the USA [1]. Paracetamol tox-
icity is rare when it is given in recommended doses.
However, repeated supratherapeutic doses of paracetamol
given for therapeutic reasons may cause hepatotoxicity in
adults and children [2–5]. Heubi 

 

et al.

 

 [5] described a
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series of 47 children who developed severe hepato-
toxicity after receiving multiple therapeutic doses of
paracetamol. Twenty-four (55%) died and three survived
after liver transplantation. In a case series from a paedi-
atric liver transplant centre in Australia 11 out of 18 cases
of liver failure were due to chronic paracetamol exposure
[6].

The major metabolic pathways of paracetamol are glu-
curonidation and sulphation. A minor pathway, catalysed
by cytochrome P450, produces a highly toxic metabolite,
N-acetyl-

 

p

 

-benzoquinoneimine (NAPQI), which is
detoxified in the hepatocytes by the glutathione system.

The aim of this study was to compare prospectively
glutathione, glutathione-dependent enzymes and antiox-
idant status between febrile children taking repeated
doses of paracetamol (normal or supratherapeutic) and
afebrile children who had not received paracetamol.

 

Patients and methods

 

The patients comprised a prospective cohort of children
2 months to 10 years of age who presented to the pae-
diatric emergency department and paediatric ambulatory
care unit.

The study was approved by the institutional review
board for human subject research at the University of
Tel-Aviv. Informed written consent was obtained from
parents before enrolment.

Three groups of children were studied. Group 1 con-
sisted of afebrile children who did not receive paraceta-
mol and were examined for noninfectious causes. Group
2 consisted of children who had fever above 38.5

 

∞

 

C for
more than 72 h and had been receiving repeated doses
of paracetamol up to 75 mg kg

 

-

 

1

 

 body weight per day
during this period. Group 3 consisted of children who
had fever above 38.5

 

∞

 

C for more than 72 h and received
repeated doses of paracetamol exceeding a total daily
dose of 75 mg kg

 

-

 

1

 

 body weight.
Patients were excluded from the study if they had

known chronic liver disease, suspected viral hepatitis, or
treatment with a potentially hepatotoxic drug or with
drugs that induce cytochrome P450.

In every child presenting to the paediatric emergency
department, a careful history regarding paracetamol
administration was taken from the parent or carer. If the
reported total daily dose of paracetamol administered was
more than 30 mg kg

 

-

 

1

 

 per day for more than 72 h, a
questionnaire was filled in by the paediatrician after
interviewing the family. The questionnaire included
information on the duration of fever, paracetamol doses,
frequency and route of administration, and other drugs
administered to the child. The total daily dose was veri-
fied by asking the parents to recall how many packages
of paracetamol were used during the current illness.

Patients for the control group (no fever and no parac-
etamol treatment) were recruited from the emergency
department and from the ambulatory paediatric unit.

Blood was taken from each child, and analysed for
aspartate aminotransferase (AST), alanine aminotrans-
ferase (ALT), gammaglutamil transferase (GGT), alkaline
phosphatase (ALP), urea, creatinine and uric acid.
Reduced glutathione (GSH), glutathione reductase
(GR), glutathione peroxidase (GPX), glutathione S-
transferase (GST) and superoxide dismutase (SOD) were
measured in erythrocytes. Antioxidant status was deter-
mined in plasma.

 

Biochemical analysis

 

Peripheral blood was collected into heparin vacutainer
tubes and immediately transferred on ice to the labora-
tory. The erythrocyte lysate was prepared according to
the method of Beutler 

 

et al.

 

 [7] and rapidly frozen to

 

-

 

70

 

∞

 

C.
All activity assays were performed on a Cobas Mira

Random Access Chemistry Analyser (F. Hoffmann
LaRoche, Ltd. Diagnostic Division, Basel, Switzerland).
GPX activity was measured at 340 nm as NADPH
oxidized using a commercial kit with cumene hydro-
peroxide as substrate (Randox Laboratories Ltd, San
Francisco, CA, USA). One activity unit was defined as
1 

 

m

 

mol NADPH oxidized min

 

-

 

1

 

 l

 

-

 

1

 

 haemolysate. The
lower detection limit was 2.9 

 

m

 

mol l

 

-

 

1

 

 min

 

-

 

1

 

, and the
coefficient of variation for the assay was 1.85% at
1048.71 U l

 

-

 

1

 

. GR activity was determined at 340 nm
using a commercial kit (Glutathione–reductase; R&D
Systems, Oxis International Inc., Portland, OR, USA).
One activity unit was defined as 1 

 

m

 

mol NADP
(NADPH) formed min

 

-

 

1

 

 l

 

-

 

1

 

 haemolysate. The lower
detection limit was 0.14 

 

m

 

mol l

 

-

 

1

 

, and the coefficient of
variation was 3% at 2 

 

m

 

mol l

 

-

 

1

 

. GSH content was deter-
mined with dithionitrobenzoic acid using the method
described by Beutler 

 

et al.

 

 [8] and was expressed in 

 

m

 

mol
GSH l

 

-

 

1

 

 haemolysate. The lower detection limit was
5 

 

m

 

mol l

 

-

 

1

 

, and the coefficient of variation was 1% at
20 

 

m

 

mol l

 

-

 

1

 

. SOD was determined using a commercial
kit (Randox Laboratories, Ltd) at 500 nm as the inhibitor
of xanthine oxidation by xanthine oxidase. Activity was
defined as SOD U l

 

-

 

1

 

 haemolysate according to the stan-
dard provided in the kit. The lower detection limit was
0.2 U l

 

-

 

1

 

, and the coefficient of variation was 3.8% at
236 U l

 

-

 

1

 

. GST was determined at 340 nm using 1-
chloro-2,4-dinitrobenzene as a substrate according to the
method described by Habig 

 

et al.

 

 [9]. One activity unit
was defined as 1 

 

m

 

mol complex formed min-1 l-1

haemolysate. The lower detection limit was 7 mmol
min-1 l-1 haemolysate, and the coefficient of variation was
5–11% at 7 U l-1. Antioxidant status was measured in
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plasma using the method described by Miller et al. [10].
AST and ALT were measured in the serum using a
chemistry analyser (ILAB, International Laboratories,
Milan, Italy).

Statistical analysis

Groups were compared by one-way analysis of variance
with post hoc Tukey test for normally distributed variables
and by Kruskal–Wallis one-way analysis of variance on
ranks with Dunn’s method for non-normally distributed
variables. Multiple linear regression was used to deter-
mine the effect of independent variables on the out-
comes. Results are presented as mean ± SD or median as
appropriate. P-value of <0.05 was considered significant.

Results

Fifty-one children participated in the study. Group 1
included 24 children aged 6 ± 3 years who were afebrile
and did not receive paracetamol. They presented to the
hospital for inguinal hernia repair (n = 12), abdominal
pain (n = 8), and cervical lymphadenopathy (n = 4).
Group 2 included 13 children aged 3.5 ± 2.6 years with
fever above 38.5∞C who received paracetamol within the
recommended dose [50.3 ± 15 (30–75) mg kg-1 body
weight per day] for more than 72 h [4.1 ± 1.8 (3–
10) days]. Group 3 included 14 children aged
2.2 ± 1.8 years with fever above 38.5∞C who received
paracetamol above the recommended therapeutic dose
[107 ± 28 (80–180) mg kg-1 body weight per day] for
more than 72 h [3.9 ± 1.7 (3–9) days]. All the children
in this series received paediatric preparations of parace-
tamol. The majority of the children in group 3 received
high dose of the drug because it was given at intervals
shorter than recommended or because parents gave more
than the recommended dose in an attempt to control the
fever.

The ages, weight, sex, duration of fever and time from
the last dose of paracetamol for the different groups are
presented in Table 1.

There was no significant difference in the duration of

fever or time from the last dose of paracetamol (P = 0.7
and P = 0.94, respectively), or admission rates between
the groups.

Patients in the control group were older in comparison
with patients in groups 2 and 3 (P = 0.042 and
P < 0.001, respectively). The difference in ages between
groups 2 and 3 was not statistically significant (P = 0.38)

There were no cases of severe hepatotoxicity. The
median AST activity in patients treated with high-dose
paracetamol was 55 IU compared with 29 IU and 28 IU
in groups 1 and 2, respectively (P = 0.027). There were
no significant differences between the groups with
respect to urea, creatinine, uric acid, ALT, GGT or ALP.

GSH, GST, GR, GPX and SOD levels in erythrocytes
are presented in Table 2.

Erythrocyte GSH content (Figure 1) was significantly
lower in group 3 compared with groups 1 and 2 (mean
differences 3.41 mmol gHb-1, 95% CI 2.10–4.72, and
2.15 mmol gHb-1, 95% CI 0.65–3.65, respectively;
P < 0.001 and P = 0.003, respectively). Although patients
in group 2 had lower GSH content than patients in the
control group, this difference was not significant (mean
difference 1.26 mmol gHb-1, 95% CI 0.09–2.10,
P = 0.071).

GR activity was significantly lower in febrile patients
exposed to recommended and supratherapeutic doses of
paracetamol in comparison with controls (mean differ-
ences 3.44 mmol min-1 gHb-1, 95% CI 0.63–6.25, and
5.64 mmol min-1 gHb-1, 95% CI 2.90–8.38, respectively;
P = 0.013 and P < 0.001, respectively).

Erythrocyte GST activity (Figure 2) was significantly

Table 1 Demographic features of study groups.

Group n
Sex
M/F

Age (years)
± s.d.

Duration of
fever (days)

Time from
last dose of

paracetamol (h)

1 24 12/12 6 ± 3 – –
2 13 7/6 3.5 ± 2.6 4.1 ± 1.8 (3–10) 4.9 ± 6.9 (1–24)
3 14 6/8 2.2 ± 1.8 3.9 ± 1.7 (3–9) 4.8 ± 6 (1–24)

Table 2 Glutathione and glutathione-related enzyme content in erythrocytes of patients treated with paracetamol and in controls.

GSH
(mmol gHb-1)
mean ± SD

GPX
(U min-1 gHb-1)

median*

GST
(U min-1 gHb-1)

median*

GR
(U min-1 gHb-1)

median*

SOD
(U min-1 gHb-1) 

mean ± SD

Group 1 5.68 ± 1.88† 44.98§ 2.18¶ 10.18 ± 3.92† 2353.5 ± 461.8†‡

Group 2 4.43 ± 1.54‡ 38.16§ 3.17 6.74 ± 3.18†† 2053.2 ± 697.8**
Group 3 2.27 ± 1.06†‡ 35.76 4.58¶ 4.54 ± 2.35†,††  1497 ± 592.7**†

*Distribution of the data was not normal. †P < 0.001; ‡P = 0.003; §P = 0.045; ¶P = 0.04; **P = 0.036; ††P = 0.013.
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Figure 3 Glutathione (GSH) content in erythrocytes of febrile 
children treated with paracetamol and controls in relation to dose 
(R = 0.65).
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Figure 1 Glutathione (GSH) content in erythrocytes in children 
treated with paracetamol and in controls. Data presented as mean 
and standard error (P < 0.001 and P = 0.003 for the difference 
between group 3 and groups 1 and 2 by ANOVA).
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higher in patients treated with high-dose paracetamol
compared with controls (mean difference 1.91 mmol
min-1 gHb-1, 95% CI 0.57–3.24, P = 0.04). There was no
statistically significant difference in GST activity between
patients in groups 2 and 3 or between patients in groups
1 and 2.

Erythrocyte GPX activity was lower in patients from
group 2 than in patients from group 1 (mean difference
11.5 mmol min-1 gHb-1, 95% CI 1.1–21.9, P = 0.045)
(Table 2). SOD activity was significantly lower in patients
from group 3 compared with groups 1 and 2 (mean
differences 856 U min-1 gHb-1, 95% CI 397–1316, and

556 U min-1 gHb-1, 95% CI 30–1082, respectively;
P < 0.001 and P = 0.036) (Table 2).

Mean antioxidant status was 2.066 ± 0.66, 1.86 ± 0.86,
and 1.23 ± 0.33 mmol l-1 plasma in groups 1, 2, and 3,
respectively. This was significantly lower in group 3 com-
pared with group 1 (mean differences 0.83 mmol l-1

plasma, 95% CI 0.30–1.36, and 0.63 mmol l-1 plasma,
95% CI 0.02–1.24, respectively; P = 0.001 and
P = 0.039, respectively).

As there was a significant difference in ages between
the groups, we used multiple regression analysis to deter-
mine the effects of age and daily paracetamol dose on
GR, GST, GPX, GSH and SOD.

Paracetamol dose was the only independent variable
affecting GR, GST and SOD levels, with P-values of
0.007, 0.003 and 0.008, respectively.

GSH content was affected by paracetamol dose and
age (P < 0.001 and P = 0.021, respectively). The correla-
tion between daily paracetamol dose and GSH is pre-
sented in Figure 3.

Discussion

Our data show for the first time that in febrile children,
treatment with repeated supratherapeutic doses of parac-
etamol is associated with reduced erythrocyte glutathione
content and antioxidant status.

The major metabolic pathways of paracetamol are glu-
curonidation and sulphation. Under normal conditions
about 5% of paracetamol is metabolized through the
cytochrome P450 system, leading to the formation of the
highly reactive intermediate NAPQI [11, 12]. NAPQI is
conjugated with glutathione and eliminated until glu-
tathione and available liver sulphur stores become criti-
cally low. If NAPQI is not removed, it binds to critical

Figure 2 Glutathione S-transferase (GST) activity in erythrocytes 
in children treated with paracetamol and in controls. Data are 
presented as group medians and standard deviation (P = 0.04 for 
differences between groups 3 and 1 by ANOVA).
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intracellular molecules and eventually leads to toxicity
and cell death.

Glutathione, in its reduced (GSH) and oxidized
(GSSG) forms, is the main intracellular thiol redox sys-
tem in erythrocytes [13]. One of its major functions is
the detoxification of reactive electrophiles and toxic oxy-
gen metabolites generated during the metabolism of
endogenous and exogenous substance [14]. Intermediates
such as hydrogen peroxide and hydroperoxides are
reduced by glutathione peroxidase at the expense of
GSH. Oxidized glutathione (GSSG) is reduced by glu-
tathione reductase (GR) in a NADPH-dependent reac-
tion. The normal functioning of this closed system (redox
cycle) maintains a high intracellular GSH:GSSG ratio and
protects cells against oxidative damage. Many different
endogenous and exogenous electrophiles are also detox-
ified via conjugation with GSH catalysed by glutathione
transferase (GST) [15–17].

Drugs that lead to the depletion of GSH or influence
the activity of any of these GSH-dependent enzymes may
result in toxic responses. Glutathione complexes with
NAPQI in the liver [18], depletion of the former
increases the risk of hepatotoxicity [18, 19]. There is
evidence that glutathione depletion in erythrocytes
reflects glutathione depletion in other tissues including
liver cells [20]. Although erythrocytes synthesize glu-
tathione, there is an interorgan glutathione cycle, where
liver cells transport glutathione into the plasma and
erythrocytes [14, 21, 22]. Based on animal studies, it was
postulated that an interorgan glutathione redox cycle may
be occurring where the liver is central to the reduction
of GSSG [23]. It was also shown that other drugs, such
as methanol and azathioprine, can cause depletion of
both liver and erythrocyte GSH [24–26].

Some animal studies showed that acute paracetamol
overdose can deplete erythrocyte glutathione [27, 28],
whereas other studies failed to show such an effect [29].
However, repeated paracetamol dosing in rats produced
significant changes in glutathione, glutathione-dependent
enzymes and antioxidant status [30]. Although the mech-
anism for the lower glutathione content in our patients
is not clear, it may be evidence of depleted intrahepatic
glutathione. This hypothesis should be further tested in
future studies. A previous study did not demonstrate
glutathione depletion in the erythrocytes of children
treated with paracetamol [31]. However, unlike our
patients, the children in that study were not treated with
high doses of paracetamol.

The enzymatic assay [8] used to detect GSH is not
totally specific and other nonprotein thiols in the eryth-
rocytes could affect the GSH results. However, GSH is
the most abundant nonprotein thiol in the red blood cell,
and GSH content measured by HPLC is comparable to
that obtained by the enzymatic assay [32, 33]. As the

enzymatic assay also used a correction for GSSG, it is
reasonable to assume that the reactive thiols are mainly
GSH.

The lower SOD activity found in the children treated
with repeated supratherapeutic doses of paracetamol is
another indication of a reduced antioxidant status. Similar
changes have been described in hepatocytes of rats
exposed to repeated doses of paracetamol.

In a study by O’Brien et al. [30], rats treated with
paracetamol had higher GR activity than the naive ani-
mals. It was suggested that this higher GR activity may
have a protective effect against paracetamol toxicity. In
contrast to these findings, we found lower GR activity
in children exposed to repeated high doses of paraceta-
mol, suggesting a lack of this protective mechanism in
erythrocytes.

GST content was greater in patients treated with high-
dose paracetamol compared with patients receiving ther-
apeutic doses and with controls. Hepatic GST is a sen-
sitive indicator of hepatocellular injury [34]. Compared
with naive rats, those exposed to repeated doses of parac-
etamol have been shown to have higher GST activity in
hepatocytes [35]. However, erythrocyte GST differs from
hepatic GST [36] and the increase in GST in hepatocytes
after exposure to drugs, which involves a higher mRNA
expression [35], does not occur in erythrocytes.

The physiological functions of GST in erythrocytes are
not fully understood. One role is to catalyse the binding
of glutathione to xenobiotics, including paracetamol [14].
Furthermore, higher GST activity in erythrocytes has
been described after exposure to oxidative stress [37]. The
mechanism for the high GST activity we found in chil-
dren treated with high-dose paracetamol is not clear.
Possible explanations are increased expression of the
protein in erythrocytes, as previously described in
patients with uraemia [38], or kinetic modulation of the
enzyme.

The role of GST in the treatment of chronic suprath-
erapeutic paracetamol toxicity requires further validation
and the development of rapid, simple analytical tests [39].
There are other possible explanations for the reduced
antioxidative status found in our patients. Decreased cal-
orie intake has been found to be associated with a low-
ered erythrocyte glutathione content in both animals and
human studies [40, 41]. Nonetheless, in humans, only
severe malnutrition associated with oedema was associ-
ated with low GSH content in erythrocytes [41]. As none
of our patients had signs of malnutrition or was oedem-
atous, it is more likely that at least part of the difference
in GSH is due to the effect of paracetamol.

Sepsis and inflammation can cause an increased oxida-
tive stress [42]. However, none of our patients had sepsis,
there were no differences in the duration of fever
between the groups, and patients treated with high-dose
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paracetamol were not considered to be more ill than
patients treated with recommended doses.

The febrile patients were younger than the controls.
However, there was no significant age difference between
patients treated with high-dose paracetamol and those
treated with the recommended doses. Multiple linear
regression analysis identified paracetamol dose to be an
independent variable affecting GR, GST, GSH and SOD.

Our study has some limitations. First, the dose of
paracetamol given to the children was calculated based
upon the parent/carer’s report, which depended on recall
and was prone to reporting bias. We tried to minimize
this problem by verifying paracetamol dosage in two
different ways. However, the possibility of over- or
under-estimation of paracetamol dose cannot be
excluded. The methodology used in this study cannot
prove a causative effect of paracetamol in decreasing glu-
tathione content as other variables that we did not con-
trol may have affected the outcome.

Rivera-Penera et al. [3] suggested that in sick children
who receive multiple, supratherapeutic doses of the drug,
the therapeutic index for paracetamol may be much
lower than that associated with intermittent, therapeutic
administration of the drug. It is important to note that
the studies [2–6] reporting liver failure after repeated
doses of paracetamol in children are case reports or case
series. It is possible that in some of these reports the
infectious disease itself caused the liver disease, not expo-
sure to paracetamol. Given that millions of children are
treated with paracetamol worldwide, and the few cases
of hepatotoxicity reported to date, liver damage is prob-
ably a rare phenomenon. Our findings may suggest an
explanation for this observation. Further studies are
needed to assess the role of repeated supratherapeutic
doses of paracetamol in depleting intrahepatic glu-
tathione, and to evaluate whether changes in GSH and
glutathione-related enzymes in erythrocytes, following
paracetamol treatment, are related to an increased risk of
liver damage.
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